Hydra regeneration from recombined ectodermal and endodermal tissue. II. Differential stability in the ectodermal and endodermal epithelial organization.
نویسندگان
چکیده
Hydra tissue consists of the ectodermal and the endodermal layers. When the two layers were separated by procaine treatment and then recombined, the ectodermal epithelial cells spread as a single cell layer over the endoderm as in epiboly in vertebrate embryogenesis, and the resultant spherical structure subsequently regenerated into a complete hydra. In this study, light and electron microscopy were used to examine the structural changes which took place in the cells and tissue during this epibolic ectodermal spreading process. Within a few hours after tissue recombination, the endoderm underwent dramatic changes; it lost its epithelial sheet organization, and turned into a mass of irregularly shaped cells without the apical-basal cell polarity initially present. In contrast, the ectoderm maintained its basic epithelial sheet organization as it spread over the endoderm. Later, the endodermal epithelial cells reorganized themselves into a single-layered epithelial sheet underneath the spreading ectodermal layer. The resultant spherical structure consisted of a single layer of ectodermal epithelial cells outside, a single layer of endodermal epithelial cells inside, and an empty cavity in the center as in normal hydra tissue. This structure regenerated into hydra in the following days. These and other observations demonstrate that the two-layered epithelial sheet organization is highly dynamic, and that its stability is maintained by strong interactions between the two layers in normal hydra. It is suggested that this dynamic nature of the hydra tissue, particularly the high plasticity of the endodermal epithelial sheet organization, may be an important element for the high regenerative capacity of this organism.
منابع مشابه
Hydra regeneration from recombined ectodermal and endodermal tissue. I. Epibolic ectodermal spreading is driven by cell intercalation.
Cell-cell interaction and cell rearrangement were examined in the process of epithelial sheet formation during regeneration from hydra cell aggregates. The ectodermal and endodermal epithelial cell layers of Hydra magnipapillata were separated by procaine treatment. Each of the separated layers was then dissociated into single cells and reaggregated to produce ectodermal or endodermal cell aggr...
متن کاملMotility of endodermal epithelial cells plays a major role in reorganizing the two epithelial layers in Hydra
Cell-cell interactions and cell rearrangements play important roles during development. Aggregates of Hydra cells reorganize into the two epithelial layers and subsequently form a normal animal. Examination of the formation of the two layers under various situations, indicates that the motility of endodermal epithelial cells, but not the differential adhesive forces of the two types of epitheli...
متن کاملUltrastructural observations of adherent cell pairs in hydra vulgaris
Previous morphological studies of cell sorting in Hydra vulgaris have considered only clusters of cells. Here, we present ultrastructural observations on the adherent region of cell pairs brought into contact (following dissociation) using a three-dimensional laser manipulator. There was a much larger area of close membrane contact between endodermal cell pairs in comparison with ectodermal cel...
متن کاملEnhancement of foot formation in Hydra by a novel epitheliopeptide, Hym-323.
During the course of a systematic screening of peptide signaling molecules in Hydra magnipapillata, a novel peptide, Hym-323, which enhances foot regeneration was identified. The peptide is 16 amino acids long, and is encoded in the precursor protein as a single copy. Northern blot analysis, in situ hybridization analysis and immunohistochemistry showed that it was expressed in both ectodermal ...
متن کاملElimination by Hydra interstitial and nerve cells by means of colchicine.
Hydra treated with colchicine or Colcemid become depleted of 95-99% of their interstitial cells and derivatives of this stem cell: nematoblasts, nematocytes and nerve cells. A second treatment removes most or all remaining interstitial cells. The most effective treatment is an 8-h immersion of whole Hydra attenuata in 0.04% Colcemid or 0.4% colchicine. Interstitial cells are eliminated through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 110 ( Pt 16) شماره
صفحات -
تاریخ انتشار 1997